Ventilatory long-term facilitation is evident after initial and repeated exposure to intermittent hypoxia in mice genetically depleted of brain serotonin.
نویسندگان
چکیده
Our study was designed to determine if central nervous system (CNS) serotonin is required for the induction of ventilatory long-term facilitation (LTF) in intact, spontaneously breathing mice. Nineteen tryptophan hydroxylase 2-deficient (Tph2(-/-)) mice, devoid of serotonin in the CNS, and their wild-type counterparts (Tph2(+/+)) were exposed to intermittent hypoxia each day for 10 consecutive days. The ventilatory response to intermittent hypoxia was greater in the Tph2(+/+) compared with the Tph2(-/-) mice (1.10 ± 0.10 vs. 0.77 ± 0.01 ml min(-1)·percent(-1) oxygen; P ≤ 0.04). Ventilatory LTF, caused by increases in breathing frequency, was evident in Tph2(+/+) and Tph2(-/-) mice following exposure to intermittent hypoxia each day; however, the magnitude of the response was greater in the Tph2(+/+) compared with the Tph2(-/-) mice (1.11 ± 0.02 vs. 1.05 ± 0.01 normalized to baseline on each day; P ≤ 0.01). The magnitude of ventilatory LTF increased significantly from the initial to the finals days of the protocol in the Tph2(-/-) (1.06 ± 0.02 vs. 1.11 ± 0.03 normalized to baseline on the initial days; P ≤ 0.004) but not in the Tph2(+/+) mice. This enhanced response was mediated by increases in tidal volume. Body temperature and metabolic rate did not account for differences in the magnitude of ventilatory LTF observed between groups after acute and repeated daily exposure to intermittent hypoxia. We conclude that ventilatory LTF, after acute exposure to intermittent hypoxia, is mediated by increases in breathing frequency and occurs in the absence of serotonin, although the magnitude of the response is diminished. This weakened response is enhanced following repeated daily exposure to intermittent hypoxia, via increases in tidal volume, to a similar magnitude evident in Tph2(+/+) mice. Thus the magnitude of ventilatory LTF following repeated daily exposure to intermittent hypoxia is not dependent on the presence of CNS serotonin.
منابع مشابه
The hypoxic ventilatory response and ventilatory long-term facilitation are altered by time of day and repeated daily exposure to intermittent hypoxia.
This study examined whether time of day and repeated exposure to intermittent hypoxia have an impact on the hypoxic ventilatory response (HVR) and ventilatory long-term facilitation (vLTF). Thirteen participants with sleep apnea were exposed to twelve 4-min episodes of isocapnic hypoxia followed by a 30-min recovery period each day for 10 days. On days 1 (initial day) and 10 (final day) partici...
متن کاملVentilatory long-term facilitation in mice can be observed during both sleep and wake periods and depends on orexin.
Respiratory long-term facilitation (LTF) is a long-lasting (>1 h) augmentation of respiratory motor output that occurs even after cessation of hypoxic stimuli, is serotonin-dependent, and is thought to prevent sleep-disordered breathing such as sleep apnea. Raphe nuclei, which modulate several physiological functions through serotonin, receive dense projections from orexin-containing neurons in...
متن کاملVentilatory long-term facilitation in unanesthetized rats.
We tested the hypothesis that unanesthetized rats exhibit ventilatory long-term facilitation (LTF) after intermittent, but not continuous, hypoxia. Minute ventilation (VE) and carbon dioxide production (VCO(2)) were measured in unanesthetized, unrestrained male Sprague-Dawley rats via barometric plethysmography before, during, and after exposure to continuous or intermittent hypoxia. Hypoxia wa...
متن کاملPlatelet-activating factor receptor modulates respiratory adaptation to long-term intermittent hypoxia in mice.
During hypoxia, release of platelet-activating factor (PAF) and activation of its cognate receptor (PAFR) regulate neural transmission and are required for full expression of peak hypoxic ventilatory response (pHVR) but not hypercapnic ventilatory response. However, it is unclear whether PAFR underlie components of long-term ventilatory adaptations to hypoxia. To examine this issue, adult male ...
متن کاملSerotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats.
Respiratory long-term facilitation (LTF), a serotonin-dependent, persistent augmentation of respiratory activity after episodic hypoxia, is enhanced by pretreatment of chronic intermittent hypoxia (CIH; 5 min 11-12% O2-5 min air, 12 h/night for 7 nights). The present study examined the effects of methysergide (serotonin 5-HT1,2,5,6,7 receptor antagonist), ketanserin (5-HT2 antagonist), or cloza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 116 3 شماره
صفحات -
تاریخ انتشار 2014